The Crystal Structure of $\mathrm{La}_{6} \mathrm{UO}_{\mathbf{1 2}}$

YUKIO HINATSU, NORIO MASAKI, AND TAKEO FUJINO
Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-11, Japan

Received November 11, 1986; in revised form August 21, 1987

Introduction

The phase relations in $R E-U-O$ systems ($R E=$ rare-earth element) have been studied extensively (1). An outstanding feature in these systems is the existence of rhombohedral compounds, $R E_{6} \mathrm{UO}_{12} \quad(2-4)$, which form by heating the mixture of uranium oxides and rare-earth oxides in a ratio $\mathrm{U}: R E=1: 6$ (where $R E=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd}$, $\mathrm{Sm}-\mathrm{Ho}, \mathrm{Tm}-\mathrm{Lu}$, and Y) above $1000^{\circ} \mathrm{C}$. Bartram (5) has determined the crystal structures of $\mathrm{Y}_{6} \mathrm{UO}_{12}$ and $\mathrm{Lu}_{6} \mathrm{UO}_{12}$.

In the present paper, the crystal structure of $\mathrm{La}_{6} \mathrm{UO}_{12}$ was studied by the X-ray powder diffraction technique. The crystal system of $\mathrm{La}_{6} \mathrm{UO}_{12}$ was known to be rhombohedral (2,6), but no atom positional parameters had been reported.

Experimental

1. Sample Preparation

As the starting materials, $\mathrm{U}_{3} \mathrm{O}_{8}$ and $\mathrm{La}_{2} \mathrm{O}_{3}$ were used in the atomic ratio of $\mathrm{U}: \mathrm{La}=$ $1: 6$. After being finely ground in an agate mortar, the mixtures were pressed into pellets and then heated at $1200^{\circ} \mathrm{C}$ in air for 3 days. After cooling, the sample was re-
ground, pressed again into pellets, and heated at $1200^{\circ} \mathrm{C}$ for 2 days followed by slow cooling to room temperature for 3 days. The product was reddish-orange.

2. X-Ray Diffraction Analysis

The X-ray diffraction study on the sample was performed with a conventional diffractometer using $\mathrm{CuK} \alpha$ radiation monochromatized with curved pyrolytic graphite placed in front of the $\mathrm{NaI}(\mathrm{Tl})$ scintillation detector. The scans were made in the range $10^{\circ} \leq 2 \theta \leq 110^{\circ}$, where the integrated intensities of 66 reflections were collected. To eliminate systematic errors in scattering angles, the observed ones were corrected with those of Si as a standard. Lattice parameters (Table I) were calculated by the least-squares method on a FACOM M380 computer.

The crystal data are tabulated in Table I. The observed and calculated scattering angles (2 θ) are given in Table II.

Structure Analysis

The crystal system for $\mathrm{La}_{6} \mathrm{UO}_{12}$ has already been reported to be a rhombohedral one. All reflections, indexed based on hexagonal axes, with $-h+k+l=3 n$ were

TABLE I
Crystal Data

Hexagonal parameters	$a=10.468(4)(\AA)$
	$c=9.982(3)(\AA)$
Rhombohedral parameters	$a=6.899(3)(\AA)$
	$\alpha=98.69(1)^{\circ}$
Density (calculated)	$d=6.64(1)\left(\mathrm{g} / \mathrm{cm}^{3}\right)$

observable; thus, the possible space groups are $R 3, R \overline{3}, R 32, R 3 m$, and $R \overline{3} m$. Since the space groups of $\mathrm{Y}_{6} \mathrm{UO}_{12}$ and $\mathrm{Lu}_{6} \mathrm{UO}_{12}$ were both $R \overline{3}$, we made the structure analysis on this compound first by assuming the same space group. All the diffraction lines observed could be indexed in this space group.

As the initial values for computation of

TABLE II
Observed and Calculated Scattering Angles and Intensities

| $h k$ | | $2 \theta_{\text {obs }}$ | $2 \theta_{\text {calc }}$ | $I_{\text {obs }}$ | $I_{\text {calc }}$ | $h k$ | l | $2 \theta_{\text {obs }}$ | $2 \theta_{\text {calc }}$ | $I_{\text {obs }}$ | $I_{\text {calc }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 1 | 13.22 | 13.22 | 2.18 | 2.13 | 3 | 5 | 1 | | | |
| 1 | 1 | 1 | | | | | | | | | |
| 0 | 1 | 2 | 20.33 | 20.33 | 8.87 | 9.49 | 7 | 0 | 1 | | |$)$

TABLE III
Positional Parameters in Hexagonal Coordinates

	x		y	z
3 U	0	0	0	
18 La	0.1254 ± 0.0004	0.4150 ± 0.0004	0.0205 ± 0.0004	
$18 \mathrm{O}(1)$	0.200 ± 0.006	0.026 ± 0.006	0.126 ± 0.006	
$18 \mathrm{O}(2)$	0.145	± 0.006	0.453	± 0.006

the position parameters of lanthanum atom and of two oxygen atoms, those for $\mathrm{Y}_{6} \mathrm{UO}_{12}$ were used. Atomic scattering factors for U^{6+} and La^{3+} were those listed in the "International Tables for X-ray Crystallography" $(7,8)$, and the factors for O^{2-} were those from Tokonami (9). Anomalous dispersion corrections, f^{\prime} and $f^{\prime \prime}$ values of -5.359 and 13.409 for U^{6+} and -1.716 and 9.036 for La^{3+} (10), were applied to the scattering factors.

To determine the positional parameters the reliability index $R=\Sigma w\left|I_{\text {obs }}-I_{\text {calc }}\right|$ $\Sigma w I_{\text {obs }}$ was minimized. The weight, w, was regarded as $w=1 / \sqrt{ } I_{\text {obs }}$ for all the integrated intensities. The integrated observed intensities, I_{obs}, and the calculated intensities, $I_{\text {calc }}$, at the minimum are shown in Table II. The positional parameters in the hex-
agonal cell are listed in Table III. Final refinement gave $R=0.092$.

Discussion of the Structure

Our hexagonal cell parameters on La_{6} UO_{12} are well in accord with those by Aitken et al. (2) and by Diehl and Keller (6). They are larger than the values for the other rhombohedral compounds $M_{6} \mathrm{UO}_{12}$ ($M=\operatorname{Pr}, \mathrm{Nd}, \mathrm{Sm}-\mathrm{Ho}, \mathrm{Tm}-\mathrm{Lu}$, and Y). The reason for this is considered to be the larger ionic radius of La^{3+} compared with the other trivalent rare-earth ions.

A view of the structure of $\mathrm{La}_{6} \mathrm{UO}_{12}$ is shown in Fig. 1. In this figure, one hexagonal unit is depicted. Atoms are drawn with the sizes in proportion to their atomic radii. Interatomic distances and bond angles are given in Table IV. A uranium atom is surrounded by six $O(1)$ atoms which form a distorted octahedron (Fig. 2). All the U$O(1)$ distances are $2.34 \AA$; in this structure the uranyl group does not exist. The U$O(1)$ bond length is longer than those of Y_{6} UO_{12} and $\mathrm{Lu}_{6} \mathrm{UO}_{12}$. This can be, as with the lattice constants, ascribed to the larger ionic radius of La^{3+} than those of Y^{3+} and Lu^{3+}. The lanthanum atom is considered to

FIG. 1. A stereodrawing of the structure of $\mathrm{La}_{6} \mathrm{UO}_{12}$. One hexagonal unit is depicted.

TABLE IV
Interatomic Distances and Angles

Atoms	Distances (\AA)	Angles (deg.)
$\mathrm{U}-\mathrm{O}(1)(\mathrm{all})$	2.34 ± 0.02	
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}\left(1^{\prime}\right)$	3.20 ± 0.02	86.2 ± 0.6
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}\left(1^{\prime \prime}\right)$	3.42 ± 0.02	93.8 ± 0.7
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	4.68 ± 0.03	180.0
$\mathrm{La}-\mathrm{O}(1)$	2.45 ± 0.02	
$\mathrm{La}-\mathrm{O}\left(1^{\prime}\right)$	2.32 ± 0.02	
$\mathrm{La}-\mathrm{O}(2)$	2.51 ± 0.02	
$\mathrm{La}-\mathrm{O}\left(2^{\prime}\right)$	2.23 ± 0.02	
$\mathrm{La}-\mathrm{O}\left(2^{\prime \prime}\right)$	2.44 ± 0.02	
$\mathrm{La}-\mathrm{O}\left(2^{\prime \prime \prime}\right)$	2.47 ± 0.02	
$\mathrm{O}(1)-\mathrm{La}-\mathrm{O}\left(1^{\prime}\right)$	4.28 ± 0.03	127.3 ± 1.3
$\mathrm{O}(1)-\mathrm{La}-\mathrm{O}(2)$	2.93 ± 0.02	72.3 ± 0.6
$\mathrm{O}(1)-\mathrm{La}-\mathrm{O}\left(2^{\prime}\right)$	3.73 ± 0.02	105.8 ± 0.8
$\mathrm{O}(1)-\mathrm{La}-\mathrm{O}\left(2^{\prime \prime}\right)$	4.38 ± 0.03	127.5 ± 1.3
$\mathrm{O}(1)-\mathrm{La}-\mathrm{O}\left(2^{\prime \prime \prime}\right)$	3.19 ± 0.02	80.8 ± 0.6
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{La}-\mathrm{O}(2)$	4.77 ± 0.03	160.4 ± 1.5
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{La}-\mathrm{O}\left(2^{\prime}\right)$	3.38 ± 0.02	95.8 ± 0.7
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{La}-\mathrm{O}\left(2^{\prime \prime}\right)$	3.40 ± 0.02	91.2 ± 0.7
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{La}-\mathrm{O}\left(2^{\prime \prime \prime}\right)$	2.93 ± 0.02	75.2 ± 0.6
$\mathrm{O}(2)-\mathrm{La}-\mathrm{O}\left(2^{\prime}\right)$	2.96 ± 0.02	76.8 ± 0.6
$\mathrm{O}(2)-\mathrm{La}-\mathrm{O}\left(2^{\prime \prime}\right)$	2.96 ± 0.02	73.3 ± 0.6
$\mathrm{O}(2)-\mathrm{La}\left(2^{\prime \prime \prime}\right)$	4.12 ± 0.03	111.5 ± 1.0
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{La}-\mathrm{O}\left(2^{\prime \prime}\right)$	3.67 ± 0.02	103.5 ± 0.8
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{La}-\mathrm{O}\left(2^{\prime \prime \prime}\right)$	4.69 ± 0.03	171.0 ± 1.5
$\mathrm{O}\left(2^{\prime \prime}\right)-\mathrm{La}-\mathrm{O}\left(2^{\prime \prime \prime}\right)$	3.04 ± 0.02	76.4 ± 0.6
-		

be concerned mainly with the $\mathrm{La}_{6} \mathrm{UO}_{12}$ cell size, because the number of lanthanum atoms is six times larger than that of uranium atoms. The oxygen atoms are located at nearly the same positions in the unit cell for the above three compounds. Then, the longer $\mathrm{U}-\mathrm{O}(1)$ distance of $\mathrm{La}_{6} \mathrm{UO}_{12}$ is brought about as the result of larger lattice constants.
A lanthanum atom is also surrounded by six oxygen atoms, two $\mathrm{O}(1)$ atoms, and four $\mathrm{O}(2)$ atoms. The highly distorted octahedron of oxygen atoms surrounding the lanthanum atom is shown in Fig. 3. The La-O bond lengths are 2.23-2.51 \AA. In $\mathrm{La}_{2} \mathrm{O}_{3}$ each lanthanum atom has four oxygen neighbors at a distance of ca. $2.30 \AA$ and the other three at ca. $2.70 \AA$; i.e., the coordination number of the lanthanum atom is seven

Fig. 2. A view of the uranium coordination polyhedron. Atom designations are the same as in Table IV.
(11,12). Therefore, the La-O bond lengths obtained are quite reasonable, because the coordination number is decreased to six in $\mathrm{La}_{6} \mathrm{UO}_{12}$.
The two uranium polyhedra in the near-est-neighbor relation are linked through one lanthanum polyhedron. One of the two $\mathrm{O}(1)$ atoms of this lanthanum polyhedron is shared with the uranium polyhedron and the other with the other uranium polyhedron. The two uranium polyhedra aligned along the hexagonal c-axis are linked by two lanthanum polyhedra. These two lanthanum polyhedra share an edge formed by two $\mathrm{O}(2)$ atoms, while the uranium polyhedron and lanthanum polyhedron are linked together at one corner; that is, they share one $\mathrm{O}(1)$ atom.

Fig. 3. A view of the lanthanum coordination polyhedron. Atom designations are the same as in Table IV.

References

1. "Gmelin's Handbuch der Anorganischen Chemie," System-Nr55, U, Teil C3, Springer Verlag (1975).
2. E. A. Aitken, S. F. Bartram, and E. F. Juenke, Inorg. Chem. 3, 949 (1964).
3. G. G. Koshcheev, L. M. Kovba, and V. I. Spitsyn, Dokl. Akad. Nauk SSSR 175, 92 (1967).
4. U. Berndt, R. Tanamas, and C. Keller, J. Solid State Chem. 17, 113 (1976).
5. S. F. Bartram, Inorg. Chem. 5, 749 (1966).
6. H. G. Diehl and C. Keller, J. Solid State Chem. 3, 621 (1971).
7. J. A. Ibers, D. H. Templeton, B. K. Vain-
shtein, G. E. Bacon, and K. Lonsdale, Eds., "International Tables for X-ray Crystallography," Vol. III, p. 206, Kynoch Press, Birmingham (1962).
8. J. A. Ibers and W. C. Hamilton, Eds., "International Tables for X-ray Crystallography," Vol. IV, p. 87, Kynoch Press, Birmingham (1974).
9. M. Tokonami, Acta Crystallogr. 19, 486 (1965).
10. J. A. Ibers and W. C. Hamilton, Eds., "International Tables for X-ray Crystallography," Vol. IV, p. 150, Kynoch Press, Birmingham (1974).
11. L. Pauling, Z. Kristallogr. 69, 415 (1928).
12. W. C. Koehler and E. O. Wollan, Acta Crystallogr. 6, 741 (1953).
